
Design Decisions That 
Undermine API Security

Anas Mazioudi

@disklosr
github.com/disklosr

disklosr.com

apisecuniversity.com

keywer.com



Tacoma narrows bridge



Setting up the stage

● Classic e-shop website

● Domain analysis completed

● 3 main design decisions

○ Architecture

○ Session management

○ Input validation



Architecture



Microservices

● Small
● Independent
● Specialized
● Dedicated database
● Managed by different teams
● Possibly using different stacks
● Can be scaled individually



Monolith

● Typical n-tier architecture
● One deployment unit
● Spaghetti business layer
● Tightly coupled concerns
● Bad reputation



Hidden cost of microservices

● Infrastructure complexity
● Operational overhead
● Performance
● Resilience
● Eventual consistency

Complex = Harder to secure

Source: Netflix



Modular Monolith

● Doing monoliths the right way
● Applying good old design principles

○ Independent modules
○ Clear boundaries
○ Loose coupling
○ Method call vs In-memory bus

● Single repo
● One deployment unit

github.com/kgrzybek/modular-monolith-with-ddd



Modular Monolith

● Doing monoliths the right way
● Applying good old design principles

○ Independent modules
○ Clear boundaries
○ Loose coupling
○ Method call vs In-memory bus

● Single repo
● One deployment unit

github.com/kgrzybek/modular-monolith-with-ddd



Case study

● Doctolib, major French SaaS provider in 3 major european countries

● Two web apps, for individuals and health professionals

● Over 300 developers

● 3 prod releases per day

● Peak activity @10M req/mn on jul'12 2021

● Over 2.5K servers

https://touilleur-express.fr/2023/07/12/un-monolithe-cest-quoi/



Case study

● Doctolib, major French SaaS provider in 3 major european countries

● Two web apps, for individuals and health professionals

● Over 300 developers

● 3 prod releases per day

● Peak activity @10M req/mn on jul'12 2021

● Over 2.5K servers

Using a monolith: mono-repo, single deployment unit, single database

https://touilleur-express.fr/2023/07/12/un-monolithe-cest-quoi/



Case study

https://www.primevideotech.com/video-streaming/scaling-up-the-prime-video-audio-video-monitoring-service-and-reducing-costs-by-90



Takeaway #1

Microservices create more problems than they solve
Monoliths, when done right, can go a long way



Session management



Session management

● Avoids asking user for credentials each time they interact with API
● Doesn’t apply for server-to-server API calls



Json Web Tokens (Jwt)

● A specification on how to securely store and exchange session data between 
parties in json format

● Composed of 3 parts
● Can hold arbitrary data called claims
● Saves db roundtrips



Session cookies

● Traditional way of doing session management
● Simple to understand
● Work out of the box
● Session data stored on the backend



Session management

What to choose?

● Cookies
○ Simple design
○ Secure if used with httponly, secure, samesite=strict
○ Nothing inherently bad about them

● Jwt
○ Easy to make mistakes when validating manually
○ Requires good understanding to use them right
○ Payload data can get stale
○ Hard to revoke



OWASP API Top 10 (2023): Broken Authentication



Session management

What to choose?

● Cookies
○ Simple design
○ Nothing inherently bad about them
○ Battle-tested
○ Secure if used with httponly, secure, samesite=strict

● Jwt
○ Easy to make mistakes when validating
○ Requires good understanding to use them right
○ Payload data can get stale
○ Hard to revoke



Takeaway #2

Don’t dismiss using cookie-based session management
They’re still relevant and provide simplicity and great security



Input validation



● Ensure data sent by clients adheres to defined constraints
● Important security measure
● Can be implemented at different levels

Input validation



● A convenience for users
● Saves time by avoiding unnecessary round trips to servers when the client is 

sure the request would fail server validation anyway
● You know it when someone is messing with your API

Client-side validation

app prevents adding an item with 0 quantity to cart



● An crucial security measure to prevent API misuse
○ Injection attacks
○ Data corruption

● Reports back to callers why validation failed
● Usually implemented at controller level
● Should be used to validate the shape and types of received data

Server side validation



Server side validation



● An crucial security measure to prevent API misuse
○ Injection attacks
○ Data corruption

● Usually implemented at controller level
● Should be used to validate the shape and types of received data
● Not a substitute for domain validation

Server side validation



● Implements business rules
● Enforces domain invariants
● Allows an easy way to test business rules

Domain validation



Domain validation



● Failing controller validation is not an error
● Failing domain validation is a business rule violation = Error
● Domain validation acts as a fortification line in case the first line of defense 

fails

Server side validation



Takeaway #3

Implement proper validation on both client and server side.
Use your domain model to enforce business invariants and fail when 

incorrect commands are detected



● Resist the temptation to use micro-services unless it’s really justified
○ Complexity can weaken the security of the system

● You can use session-based cookies for session management in your APIs
○ Long lived Jwt can be a security issue and give access to unauthorized users

● Implement proper validation at client and server-side
○ Enforcing business rules and invariants at domain level can be a good second line of defense 

in case the first one fails

Wrapping up



Thank you
Anas Mazioudi

@disklosr
github.com/disklosr

disklosr.com

apisecuniversity.com

keywer.com


