Design Decisions That
Undermine API Security

Anas Mazioudi

@disklosr
github.com/disklosr

[I(EY\NER] disklosr.com
keywer.com




[
(o)
e
—
S
(2]
=
£
I
=
@©
=
e}
&
—




Setting up the stage

e C(lassic e-shop website

e Domain analysis completed

Orders
e 3 main design decisions
o  Architecture
o Session management Soins Pou.lme_n‘t At

o Input validation



Architecture



Microservices

Small

Independent

Specialized

Dedicated database

Managed by different teams
Possibly using different stacks
Can be scaled individually

()

Storefront
webopp

—

Product




Monolith

Typical n-tier architecture
One deployment unit
Spaghetti business layer
Tightly coupled concerns
Bad reputation

)

Storefront
webapp

Produdt | )
cata

Opders

N

X222
Payment

\Cross-

e s e 1 s

cu‘t‘timj
cencerns

InfPra

DB




Hidden cost of microservices

Infrastructure complexity
Operational overhead
Performance

Resilience

Eventual consistency

Complex = Harder to secure

e ——

Source: Netflix




Modular Monolith

e Doing monoliths the right way

e Applying good old design principles

(@)

(@)

(@)

(@)

Independent modules
Clear boundaries

Loose coupling

Method call vs In-memory bus

e Single repo

e One deployment unit

github.com/kgrzybek/modular-monolith-with-ddd

SR

Storefront
webapp

p ¥ \
sl }
8 &
'ruo_""
\_ §]
Y,

7 2,
Inventory Payment
\Z i,

-/

Cross-cutting concems

- /)

Infra

DB




Modular Monolith

e Doing monoliths the right way
e Applying good old design principles

o Independent modules

: ( ‘
o Clear boundaries
o Loose coupling
o Method call vs In-memory bus Storefront
e Single repo webape
e One deployment unit

github.com/kgrzybek/modular-monolith-with-ddd

-/

\

Cross-cutting concems

/)

- Infra

DB




Case study

e Doctolib, major French SaaS provider in 3 major european countries
e Two web apps, for individuals and health professionals
e Over 300 developers

e 3 prod releases per day

e Peak activity @10M reg/mn on jul'12 2021

e QOver 2.5K servers

https://touilleur-express.fr/2023/07/12/un-monolithe-cest-quoi/



Case study

e Doctolib, major French SaaS provider in 3 major european countries
e Two web apps, for individuals and health professionals
e Over 300 developers

e 3 prod releases per day

e Peak activity @10M reg/mn on jul'12 2021

e Over 2.5K servers

Using a monolith: mono-repo, single deployment unit, single database

https://touilleur-express.fr/2023/07/12/un-monolithe-cest-quoi/



Case study

Scaling up the Prime Video

audio/video monitoring service and
reducing costs by 90%

The move from a distributed microservices architecture to a monolith
application helped achieve higher scale, resilience, and reduce costs.

https://www.primevideotech.com/video-streaming/scaling-up-the-prime-video-audio-video-monitoring-service-and-reducing-costs-by-90



Takeaway #1

Microservices create more problems than they solve
Monoliths, when done right, can go a long way



Session management



Session management

e Avoids asking user for credentials each time they interact with API
e Doesn'’t apply for server-to-server API calls

1. User credentials 2. Session data [ \
___________ > >
3. Session Id 5. Session Id
Web client === AP server || " > | Session data

store

4, Session Id 6. Session data
——————————— > <_ —— - ——— -




Json Web Tokens (Jwt)

e A specification on how to securely store and exchange session data between
parties in json format
PY Composed Of 3 par-ts eyJhbGci0iJIUzI1NiIsInR5cCI6IkpXVCJIY. ey

JzdWIi0iIxMjMBNTY30DkwIiwibmFtZSI6Ikpva
G4gRGI1TiwiaWFBIjoxNTE2MIMSMDIyTQ. SF1Kx

() Can hOld arb|tra|’y data Ca”ed C|a|mS WRJSMeKKF2QT4fwpMe JF36POk6yJV_adQsswSc ,
e Saves db roundtrips '

FFFFFFF

VERIFY SIGNATURE




Session cookies

Traditional way of doing session management

Simple to understand
Work out of the box

Session data stored on the backend

wai)

GET http://www.example.com/ HTTP/1.1

HTTP/1.1 200 OK
Set-Cookie: session-id=12345;

GET http://www.example.com/ HTTP/1.1
cookie: session-id=12345;

SETNELS




Session management

What to choose?

e Cookies
o Simple design
o Secure if used with httponly, secure, samesite=strict
o Nothing inherently bad about them

o Jwt
o Easy to make mistakes when validating manually
Requires good understanding to use them right

Payload data can get stale
Hard to revoke

o O O



OWASP API Top 10 (2023): Broken Authentication

An APl is vulnerable if it:

» Permits credential stuffing where the attacker uses brute force with a list of valid usernames and passwords.

» Permits attackers to perform a brute force attack on the same user account, without presenting
captcha/account lockout mechanism.

» Permits weak passwords.
» Sends sensitive authentication details, such as auth tokens and passwords in the URL.

« Allows users to change their email address, current password, or do any other sensitive operations without
asking for password confirmation.

» Doesn't validate the authenticity of tokens.

« Accepts unsigned/weakly signed JWT tokens ( {“alg":"none"})
» Doesn' validate the JWT expiration date.

» Uses plain text, non-encrypted, or weakly hashed passwords.

» Uses weak encryption keys.



Session management

What to choose?

e Cookies
o Simple design
o Nothing inherently bad about them
o Battle-tested

o Secure if used with httponly, secure, samesite=strict
o Jwt
o Easy to make mistakes when validating
Requires good understanding to use them right
Payload data can get stale
Hard to revoke

o O O



Takeaway #2

Don’t dismiss using cookie-based session management
They're still relevant and provide simplicity and great security



Input validation



Input validation

Ensure data sent by clients adheres to defined constraints
Important security measure

Can be implemented at different levels

client-side
validation

~

~

~

~

~

A )

Storefront
wel:app

____

A’

APT
Back end

( )

-

-

-

server-side
validation

-
-



Client-side validation

e A convenience for users

e Saves time by avoiding unnecessary round trips to servers when the client is
sure the request would fail server validation anyway

e You know it when someone is messing with your API

LILLABO Q
45-piece train set with rail

25

* % % % % (108)

1 + ) Add to shopping bag

app prevents adding an item with 0 quantity to cart




Server side validation

e An crucial security measure to prevent APl misuse

o Injection attacks
o Data corruption

e Reports back to callers why validation failed
e Usually implemented at controller level
e Should be used to validate the shape and types of received data



Server side validation

public class BasketItemDTO

{
public int ProductId { get; set; }
public string ProductName {get; set;}
public int Quantity { get; set; }

}

public class BasketItemDTOValidator

{
public BasketItemDTOValidator()

{
RuleFor(x => x.ProductId).GreaterThan(9);
RuleFor(x => Xx.ProductName).NotEmpty().Length(1,250);
RuleFor(x => x.Quantity).InclusiveBetween(1,19);
}
}



Server side validation

e An crucial security measure to prevent APl misuse

o Injection attacks
o Data corruption

e Usually implemented at controller level
e Should be used to validate the shape and types of received data
e Not a substitute for domain validation



Domain validation

e Implements business rules
e Enforces domain invariants
e Allows an easy way to test business rules

Qlie_n‘t-ﬁde_
validation Ap lication
S~ validation
Storefront

we,baﬂo

Dowmain
- validation

- -

- J



Domain validation

// Domain layer
public class BasketItem

{
public BasketItem(int productId, string productName, int quantity)

{
if (quantity < 1)
throw new DomainException("Basket item quantity cannot be < 1")



Server side validation

e Failing controller validation is not an error
e Failing domain validation is a business rule violation = Error
e Domain validation acts as a fortification line in case the first line of defense

fails
) 4 D
Controller Domain
[ Input re_ques‘t_J— —————> validotion | ====---- > validation
% W, \% J
V V

Invalid commands

are @ttep‘tiona[.
Should not happen

Invalid requests
are norwal



Takeaway #3

Implement proper validation on both client and server side.
Use your domain model to enforce business invariants and fail when
incorrect commands are detected



Wrapping up

e Resist the temptation to use micro-services unless it’s really justified
o Complexity can weaken the security of the system

e You can use session-based cookies for session management in your APls
o Long lived Jwt can be a security issue and give access to unauthorized users

e Implement proper validation at client and server-side

o Enforcing business rules and invariants at domain level can be a good second line of defense
in case the first one fails



Thank you

Anas Mazioudi

@disklosr
github.com/disklosr /X\
[IKEYWERI disklosr.com ARTSEC

keywer.com

apisecuniversity.com



